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Overview 
The new  Internet computing environment has brought new kinds of data to huge numbers of  users 
across the globe.  Multimedia data types like images, maps, video clips, and audio clips were once 
rarely seen outside of specialty software.  Today, many Web-based applications require their database 
servers to manage such data.  Other software solutions need to store data dealing with financial 
instruments, engineering diagrams, or molecular structures.  An increasingly large number of database 
applications demand content-rich data types and associated content-specific business logic .   

With the addition of object-relational extensions, the Oracle8i server [OAD99, ODC99]  can be 
enhanced by developers to create their own application-domain-specific data types.  For example, one 
can create new data types representing customers, financial portfolios, photographs or telephone 
networks � and thus ensure that database programs deal with the same level of abstraction as  their 
corresponding application domain. In many cases, it is desirable to integrate these new domain types 
as closely as possible with the server so they are treated at par with the built-in types like NUMBER 
or VARCHAR.  With such integration, the database server can be readily extended for new domains. 

Oracle8i gives application developers greater control over user-defined data types, not only by 
enabling the capture of domain logic and processes associated with the data, but also by providing 
control over the manner in which the server stores, retrieves or interprets this data.  The Oracle8i 
database contains a series of database extensibility services, which enable the packaging and 
integration of content-rich domain types and behavior into server-based managed components.  Such 
components are called Data Cartridges [ODC99]. They are developed and managed by means of a set 
of database interfaces called the Oracle Data Cartridge Interfaces (ODCI).  Let us look at the issues 
involved in creating data cartridges in more detail. 

Relational databases, so far, are widely known for efficiently managing and manipulating simple, 
structured business data. The business data of the early 90s mostly consisted of flat, row oriented data 
(i.e. tabular data with no nested or structured columns). Also, databases did not maintain unstructured 
data such as  text associated with records, voice clips, or  spatial data. With advances in both 
computer hardware and software technologies, applications are becoming more sophisticated, and 
they desire efficient integration of heterogeneous, multi-media data sources. For example, it is quite 
reasonable to store and manipulate data about an employee’s salary (structured, relational data) with 
the employee’s resume (textual, non-relational data), and correlate the results with the location of 
employees on a map. How many employees who know DBMS and make less than $50k live within 
50 miles of San Francisco? Surely they deserve raises.  

Until recently, the burden on integrating heterogeneous data types and data sources fell on the 
applications rather than the underlying DBMS. This happened because of three reasons:  

1. Databases did not have the capability  to store the unstructured or semi-structured data such as 
freeform text resumes. 

2. Databases could not perform specialized querying on high-dimensional data, such as spatial 
queries on geographic locations. 

3. Databases did not provide adequate performance for efficient manipulation of large amounts of 
content rich data, so that queries such as the above finished in reasonable time.  



Specialized applications, therefore, became available from various vendors to provide middle-tiers 
that perform spatial searches, free text searches etc. However, such  loosely integrated specialty 
middle-tiers have several disadvantages: 

• Many functions have to be build repeatedly. 

• Applications become too large, too complex, and far too custom-built.  

• Even though these mid-tier products can exploit special access and storage methods to manipulate 
multi-media data, they run outside the DBMS server, causing performance  to degrade as 
interactions with the database server increase.  

• Optimizations across data sources cannot be performed efficiently. For instance, a spatial data 
server knows nothing about text searches and vice versa. 

• Each speciality server comes with its own utilities and practices for administering data, causing 
severe complexity in the backup, restore, and monitor functions necessary to guarantee high 
availability. 

Since processing for content-rich data is beset with problems when done outside the database, the next 
question that arises is whether databases can support specific rich types inside them. Since it is not 
clear what constitutes a full set of such types, it seems inefficient to provide, on an ad hoc basis, 
support for each new type that comes along. The DBMS would have to be re-architected each time a 
new type is encountered.  

In order words, unless  all the content-rich types belong to some comprehensive architecture, they will 
continue to be deviled by issues in re-architecture, cross-type query optimization, uniform 
programmatic access and so on. 

Oracle approached the content-rich data problem from the standpoint of creating such an architecture. 
Databases must  be extended to be able to efficiently handle various rich, application-domain-specific 
data types. Extensibility is the ability to provide support for any user-defined datatype (structured or 
unstructured) efficiently without having to re-architect the DBMS. Data type support should include: 
definition of the type, user-defined operations (operators and functions) on the datatype, user-defined 
storage and access structures for efficient storage and retrieval of the datatype instances, queryability 
on the datatype instances, etc. Consider the following example: 

CREATE TABLE patients (

patient_id PersonID,

age INTEGER,

medhistory Text,

catscan Image,

loc Location

);

 
CREATE TABLE cities (

name CHAR(20),

loc Location,

population INTEGER

);

 



Given the above definitions, it should be possible to formulate queries on the different data types in 
the above tables. for instance: find the number of patients older than 50, that live within 50 miles of 
San Francisco, have had a family medical history of cancer and there is a probability greater than 0.6 
of finding a tumor in their CAT scan: 

SELECT count(p), p.age

FROM patients p, cities c

WHERE p.age > 50 AND

c.name = ‘San Francisco’ AND

Distance(p.loc, c.loc, 50) AND

TumorProb(p.catscan) >= 0.6 AND

Contains(p.medical_history, ‘cancer’)

GROUP BY p.age;

 
The above example illustrates the queryability we desire of an assortment of multi-media data types. 
In order to support the above query, it is clear that significant extensions are required to the services 
normally provided by the DBMS. Among these extensions are: 

• user-defined types - the ability to define text, image and location datatypes 

• storage of user-defined type instances - the ability to store and manipulate multi-media type 
instances 

• domain-specific operations - support for user-defined functions/operators like Contains(), 
Distance(), and TumorProb() 

• domain-specific indexing - support for indexes specific to text data (to evaluate Contains()),  
spatial data (Distance()) etc., which can be used to speed the query. 

• optimizer extensibility - support for intelligent ordering of query predicates during evaluation. In 
the above query, it is critical to decide the order in which to evaluate the where-clauses, so that 
the most restrictive clause can be applied first.The Contains operator evaluation involves text 
index search; and Distance evaluation involves a spatial index lookup. The most efficient order of 
evaluation of these different operators and functions depends on the CPU and I/O costs of the 
respective operations. The TumorProb() function call should be evaluated last if  there is no index 
on it. Since all these operators and functions are user-defined, the optimizer has to be extended to 
allow type-designers to specify the costs of various operations on the types.  

In each case where a service is an extensible one, a interface or API provides access to the service.  
Figure 1 below shows this extensibility architecture.  
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Figure 1: The Oracle Extensibility Architecture 

 
Next, we take a look at the functionality of each extensible service in more detail. 

  
Extensible Type System 
 
The Oracle Type System (OTS) [Ora97, Ora99] provides a high-level (SQL-based) interface for 
defining types. The behavior for these types can be implemented in Java, C/C++ or PL/ SQL. The 
DBMS automatically provides the low-level infrastructure services needed for input-output, 
heterogeneous client-side access for new data types, optimizations for data transfers between the 
application and the database, and so on. Let us examine the constituents of OTS. 

Object Types Object Types Object Types Object Types     

An object type, distinct from native SQL data types such as NUMBER, VARCHAR or DATE, is 
user-defined. It specifies both the underlying persistent data (called �attributes� of the object type) and 
the related behavior (�methods� of the object type). Object types are used to extend the modeling 
capabilities provided by the native data types.  They can be used to make better models of complex 
entities in the real world by binding data attributes to semantic behavior.   

There can be one or more attributes in an object type. The attributes of an object type can be the native 
data types, LOBs, collections, other object types, or REF types (see below).   

A method is a procedure or a function that is part of an object type definition.  Methods can access 
and manipulate attributes of the related object type.  Methods can be run within the execution 
environment of the Oracle8i Server.  In addition, methods can be dispatched to run outside the 
database  as part of the Extensible Server Execution service. 

Collection Types Collection Types Collection Types Collection Types     

Collections are SQL data types that contain multiple elements.  Each element or value for a collection 
is an instance of the same data type.  In Oracle8i there are two collection types � VARRAYs and 



Nested Tables.  A VARRAY contains a variable number of ordered elements.  VARRAY data types 
can be used as a column of a table or as an attribute of an object type.  Also, the element type of a 
VARRAY may be either a native data type such as NUMBER or an object type.   

Using Oracle8i SQL, a named table type can be created.  These can be used as Nested Tables to 
provide the semantics of an unordered collection.  As with VARRAY, a Nested Table type can be 
used as a column of a table or as an attribute of an object type.   

Relationship TypesRelationship TypesRelationship TypesRelationship Types    (REF) (REF) (REF) (REF)     

It is possible to obtain a reference (or the database pointer) to a standalone instance of an object type.  
References are important for navigating among object instances, particularly in client-side 
applications. A special REF operator is used to obtain a reference to a row object.  

Large ObjectsLarge ObjectsLarge ObjectsLarge Objects    (LOBs)(LOBs)(LOBs)(LOBs)    

Oracle8i provides the large object (LOB) types to handle the storage demands of images, video clips, 
documents, and other such forms of data.  Large objects are stored in a manner that optimizes space 
utilization and provides efficient access.  More specifically, large objects are composed of locators 
and the related binary or character data The LOB locators are stored in-line with other table record 
columns and for internal LOBs (BLOB, CLOB, and NCLOB) the data can reside in a separate storage 
area.  For external LOBs (BFILEs), the data is stored outside the database tablespaces in operating 
system files.  Unlike the Oracle LONG RAW, a table can contain multiple LOB columns. Each such 
column can be stored in a separate tablespace and even on different secondary storage devices.   

There are SQL data definition language (DDL) extensions to create/delete tables and object types that 
contain large object types.  The Oracle8i Server provides SQL data manipulation language (DML) 
commands to INSERT and DELETE complete LOBs.  In addition, there is an extensive set of 
commands for piece-wise reading, writing, and manipulating LOBs via Java,  PL/SQL, OLE/DB or 
the Oracle Call Interface (OCI).   

For internal LOB types, the locators and related data participate fully in the transactional model of the 
Oracle8i server.  The data for BFILEs does not participate in transactions.  However, the  BFILE 
locators themselves are fully supported by server transactions.   

With respect to SQL, the data residing within Oracle8i LOBs is opaque and not queryable.  One can 
write functions (including methods of object types) to access and manipulate parts of LOBs.  In this 
way the structure and semantics of data residing in large objects can be supplied by application 
developers.   

Opaque TypesOpaque TypesOpaque TypesOpaque Types    

The opaque type mechanism provides a way to create new basic types in the database whose internal 
structure is not known to the DBMS. The internal structure is modeled in some 3GL language (such as 
C). The database provides storage for the type instances which can be bounded by a certain size with a 
varying length or of a fixed size. The storage requirement is specified within the type definition. The 
type methods or functions that access the internal structure are external methods or external 
procedures in the same 3GL language used to model the structure. 

 
 



Server Execution Environments 
 
The Oracle8i type system de-couples the choice of implementation language for the member method 
of  an object type from its specification.  Thus, components of an Oracle8i data cartridge can be 
developed using any of the popular programming languages.  In Oracle8i, methods, functions, and 
procedures can be developed using Java, PL/SQL, or external C language routines.  Indeed, a type 
developer can mix and match multiple languages. Thus, the database server runtime environment can 
be extended by user-defined methods, functions, and procedures.  

JavaJavaJavaJava    

Java is one of the available choices for server-based execution.  Oracle8i provides a high performance 
Java Virtual Machine (JVM) to enable the use of Java in developing stored procedures, object-type 
methods, standalone functions, and constraints [OJSP99]. This scaleable, multi-user JVM runs in the 
address space of the database server, and can be used to run standard Java behavior inside the 
database. There are multiple programming models available with the JVM. JDBC allows object-
relational statement-wise access to data [OJDBC99]. SQLJ, a standard precompiler technology, allows 
SQL to be embedded directly into Java code [OSQLJ99]. Associated with the JVM is a server-based 
Object Request Broker (ORB), which enables a Enterprise JavaBeans (EJB) programming model 
[OEJB99]. The server ORB is fully compliant with the Common Object Request Broker (CORBA) 
specification. Finally, it is possible to perform ahead-of-time compilation on server-based Java code, 
so that the costs of interpreting this code is not taken at each invocation. Such �native compilation� 
capabilities make it possible to write computationally intensive data cartridge behavior in Java. 
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Figure 2: Java and Oracle8i 



 
In addition to server-based Java execution, Oracle8i also provides client-side Java access to the JVM, 
as well as the SQL and PL/SQL engines by means of JDBC. Figure 2 shows how these fit 
schematically in the overall database architecture. 

PL/SQL PL/SQL PL/SQL PL/SQL     

In Oracle8i, PL/SQL offers a data cartridge developer a powerful procedural language that supports 
all the object extensions for SQL [PLSQL99].  With PL/SQL, program logic can execute on the server 
performing traditional procedural language operations such as loops, if-then-else clauses, and array 
access.  All of this processing occurs in a transactional SQL environment where DML statements can 
be executed to retrieve and modify object data.   

C/C++C/C++C/C++C/C++    

While PL/SQL and Java are comprehensive languages, certain computations such as a Fast Fourier 
Transform or an image format conversion are handled more efficiently by C programs.  With the 
Oracle8i Server, C language programs can be called from PL/SQL.  As shown in the figure below, 
external programs are executed in a separate address space from the server.  This ensures that the 
database server is insulated from any program failures that might occur in external procedures and 
under no circumstances can an Oracle database be corrupted by such failures.   

In general, the Extensible Server Execution Environment enables an external C routine to be used 
wherever a PL/SQL subprogram could be called � such as the body of a PL/SQL method for an object 
type, a database trigger or a PL/SQL function embedded in an SQL statement.  Figure 3 shows the 
process of dispatching an external routine. 

External routines need not be confined to C; in fact, any external language that is capable of 
generating a dynamically linked library or shared object file can be used to implement behavior in the 
Extensible Server Execution service. C++, Pascal etc. are all available as implementation choices. 
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Figure 3:  Dispatching External Routines 

 
With certain reasonable restrictions, external routines can call back to the Oracle server using OCI.  
Callbacks are particularly useful for processing LOBs.  For example, by using callbacks an external 
routine can perform piece-wise reads or writes of LOBs stored in the database.  External routines can 
also use callbacks to manipulate domain indexes stored as index-organized tables (see the section on 
extensible indexing below)  in the database. External routines can be procedures or functions  (the 
difference is that functions have a return value and procedures do not.)   

 

Safe ExecutionSafe ExecutionSafe ExecutionSafe Execution    

Opening up the server execution environment  creates a new problem for component databases. As 
long as all the operating parts of a database came from one vendor, safety and operational reliability of 
the data could be achieved relatively easily. As database evolve into platforms for hosting specialized 
data and behavior, the end-user could see reliability reduced as the least reliable vendor-component 
becomes the weakest link in the chain. 

One key characteristic of the Oracle Extensibility architecture is that it is always safe for an end-user 
to run cartridges created by third-parties running on the Oracle platform.  PL/SQL and Java are 
interpreted and therefore safe to run in the server�s address-space. Even in the case where Java code is 
compiled, the native compiler performs various bounds checking operations to ensure that the 
generated compilable code is safe to run.  �Unsafe� cartridge code �  written in C or C++ -- is run 
outside the address space of the database using the so-called �extproc� mechanism. 

 
 
 
 
 



Extensible Indexing 
 
Typical database management systems support a few types of access methods (for example B+trees, 
hash indexes) on some set of data types (numbers, strings, etc.).  In recent years, databases have been 
used to store different types of data like text, spatial, image, video, and audio.  In these complex 
domains, there is a need for indexing complex data types and specialized indexing techniques.  For 
simple data types such as integers and small strings, all aspects of indexing can be easily handled by 
the database system.  This is not the case for documents, images, video clips, and other complex data 
types that require content-based retrieval.  Complex data types have application specific formats, 
indexing requirements, and selection predicates.  For example, there are many different document 
encodings (for example ODA, SGML, plain text) and information retrieval techniques (for example 
keyword, full-text boolean, similarity, and probabilistic).  Similarly, R-trees are an efficient method of 
indexing spatial data.  No database server can be built with support for all possible kinds of complex 
data and indexing.  Oracle�s solution is to build an extensible server which provides the ability to the 
application developer to define new index types [ODC99].   

The framework to develop new index types is based on the concept of cooperative indexing where a 
data cartridge and the Oracle server cooperate to build and maintain indexes for data types including 
text, spatial, and Online Analytical Processing (OLAP).  The cartridge is responsible for defining the 
index structure, maintaining the index content during load and update operations, and searching the 
index during query processing.  The index structure itself can either be stored in the Oracle database 
(e.g. in heap or  Index-Organized Tables) or externally (e.g. in operating system files). However, it is 
highly desirable for reasons of concurrency control and recovery, to have the physical storage of 
domain indexes within the Oracle database.  

To this end, Oracle8i introduces the concept of an Indextype.  The purpose of an Indextype is to 
enable efficient search and retrieval functions for complex domains such as text, spatial, image, and 
OLAP.  An Indextype is analogous to the sorted or bit-mapped index types that are built in the Oracle 
server. The difference is that the routines implementing an Indextype are provided by the cartridge 
developer, whereas the Oracle server kernel implements the built-in indexes.  Once a new Indextype 
has been implemented by a data cartridge developer, end users of the data cartridge can use it just like 
the built-in index types. 

With Extensible Indexing, the application: 

• Defines the structure of the domain index as a new Indextype; 

• Stores the index data either inside the Oracle database (in the form of tables) or outside the 
Oracle database; 

• Manages, retrieves, and uses the index data to evaluate user queries. 

When the database server handles the physical storage of domain indexes, cartridges must be able to:  

• Define the format and content of an index.  This enables cartridges to define an index structure 
that can accommodate a complex data object. 

• Build, delete, and update a domain index.  The cartridge handles building and maintenance of 
the index structures.  Note that this is a significant departure from the �automatic� indexing 
features provided for simple SQL data types.  Also, since an index is modeled as a collection of 
tuples, in-place updating is directly supported. 



• Access and interpret the content of an index.  This capability enables the data cartridge to 
become an integral component of query processing.  That is, the content-related clauses for 
database queries are handled by the data cartridge. 

Typical database systems (relational and object-relational ones) do not support extensible indexing.  
Many applications maintain file-based indexes for complex data residing in relational database tables.  
A considerable amount of code and effort is required to maintain consistency between external 
indexes and the related relational data, support compound queries (involving tabular values, and 
external indexes), and to manage a system (backup, recovery, allocate storage, etc.) with multiple 
forms of persistent storage (files and databases).  By supporting extensible indexes, the Oracle8i 
server significantly reduces the level of effort needed to develop solutions involving high-performance 
access to complex data types. The table below lists the functionality of the ODCIIndex interface. 

 

 Interface Routine Description 

Index 
Create 

ODCIIndexCreate Creates the domain index according to user-specified 
parameters 

Index Drop ODCIIndexDrop Drops the domain index 

Index Scan ODCIIndexStart Initializes the scan of the domain index 

 ODCIIndexFetch Fetches from the domain index: returns the ROWID of each 
successive row satisfying the operator predicate 

 ODCIIndexClose Ends the current use of the index 

Insert ODCIIndexInsert Maintains the domain index structure when a row is inserted in 
the indexed table 

Delete ODCIIndexDelete Maintains the domain index structure when a row is deleted 

Update ODCIIndexUpdate Maintains the domain index structure when a row is updated 

Truncate ODCIIndexTruncate Deletes the domain index data preserving the structure 

Alter ODCIIndexAlter Alters the domain index 

Meta Data ODCIIndexGetMeta
Data 

Allow import/export of domain-index-specific metadata 

Table 1 : ODCIIndex Interface 

 

Before we provide an example of Extensible Indexing, it is necessary to introduce a few additional 
constructs, all necessary to add power and flexibility to the database indexing service. We discuss 
Index-Organized Tables and Function-Based Indexes below, followed by a discussion of User-defined 
operators, before presenting the example for Extensible indexing. 



IndexIndexIndexIndex----Organized TablesOrganized TablesOrganized TablesOrganized Tables    

An index-organized table (IOT)  is a useful tool in the armory of a cartridge developer using 
extensible indexing. An IOT differs from an ordinary table in that the data for the table is held in its 
associated index. Changes to the table data, such as adding new rows, updating rows, or deleting 
rows, result only in updating the index.  

The index-organized table is like an ordinary table with an index on one or more of its columns, but 
instead of maintaining two separate storages for the table and the B*-tree index, the database system 
only maintains a single B*-tree index which contains both the encoded key value and the associated 
column values for the corresponding row. Rather than having a row's rowid as the second element of 
the index entry, the actual data row is stored in the B*-tree index. The data rows are built on the 
primary key for the table, and each B*-tree index entry contains pairs <primary_key_value, 
non_primary_key_column_values>.  

IOTs  are suitable for accessing data by the primary key or any key that is a valid prefix of the primary 
key. There is no duplication of key values because only non-key column values are stored with the 
key. One can build secondary indexes to provide efficient access to other columns. Applications 
manipulate the IOT just like an ordinary table, using SQL statements. However, the database system 
performs all operations by manipulating the corresponding B*-tree index. Table 2 summarizes the 
main distinctions between access of ordinary tables and IOTs. 

IOTs can be very useful to developers of domain indexes in that they provide a �canned� B*-tree index 
to store their data.  

 

Ordinary Table Index-Organized Table 

Rowid based access Primary key based access 

Physical rowid in ROWID pseudocolumn allows 
building secondary indexes   

Logical rowid in ROWID pseudocolumn allows 
building secondary indexes 

Rowid uniquely identifies a row; primary key can 
be optionally specified 

Primary key uniquely identifies a row; primary 
key must be specified   

Sequential scan returns all rows   Full-index scan returns all rows in primary key 
order   

UNIQUE constraint and triggers allowed UNIQUE constraint not allowed, triggers allowed 

Can be stored in a cluster with other tables   Cannot be stored in a cluster   

Table 2 : Ordinary Tables vs. Index-Organized Table 

 

FunctionFunctionFunctionFunction----based Indexingbased Indexingbased Indexingbased Indexing    

So far, we have discussed indexing data in various ways. Another intriguing possibility open to Data 
Cartridge developers is the ability to index on behavior.  



To address efficient evaluation of a query when the predicate is based on an object method, Oracle8i 
supports function-based indexes. Users can create indexes on functions (object methods) and 
expressions that involve one or more columns in the table being indexed. A function-based index 
precomputes the value of the function or expression and stores it in the index. Function-based index 
are created as either B*-tree or bitmap index. The function used for building the index can be an 
arithmetic expression or an expression that contains an object type method or a standalone SQL 
function.  

Function-based indexes provide an efficient mechanism for evaluating SQL statements that contain 
functions in their WHERE clauses. One can create a function-based index to materialize 
computational-intensive expressions in the index, so that Oracle does not need to compute the value of 
the expression when processing SELECT or DELETE statements. However, when processing 
INSERT and UPDATE statements, Oracle must still evaluate the function to process the statement.  

For example, suppose a table contains all purchase order objects, and suppose TotalValue is a method 
defined for purchase_order type that returned the total value of a purchase order object by summing 
up the values of the individual line items of the purchase order. Then the following index:  

 

CREATE INDEX TotalValueIndx ON purchase_order_table p

p.TotalValue();

 

can be used instead of evaluating the TotalValue method, e.g., when processing queries such as this:  

SELECT p.order_id FROM purchase_order_table_p WHERE

p.TotalValue() >10000;

The ability to build functional indexes thus extends the database indexing service in a fundamental 
way. 

 

User-defined Operators 

Data cartridge developers find it useful to define domain-specific operators and integrate them into the 
Oracle8i server along with extensible indexing schemes that such operators take advantage of while 
accessing data.  The ability to increase the semantics of the query language by adding such domain-
specific operators is akin to extending the query service of the database. 

Oracle8i provides a set of pre-defined operators which include arithmetic operators (+, -, *, /), 
comparison operators ( =, >, <) and logical operators (NOT, AND, OR).  These operators take as 
input one or more arguments (or operands) and return a result.  

Oracle8i allows users to extend the set of operators by defining new ones with user specified behavior. 
Like built-in operators, they take a set of operands as input and return a result.  The implementation of 
the operator is provided by the user.  After a user has defined a new operator, it can be used in SQL 
statements like any other built-in operator. 

For example, if the user defines a new operator Contains which takes as input a text document and a 
keyword and returns TRUE if the document contains the specified keyword, we can write an SQL 
query as :  



SELECT * FROM Employees

WHERE Contains(resume, ‘Oracle AND Unix’);
 

Oracle8i uses indexes to efficiently evaluate some built-in operators � for example,  a B-tree index 
can be used to evaluate the comparison operators =, > and <. Similarly, in Oracle8i, user-defined 
domain indexes can be used to efficiently evaluate user-defined operators. 

In general, user-defined operators are bound to functions.  However, operators can also be evaluated 
using indexes. For instance, the equality operator can be evaluated using a hash index.  An indextype 
provides index-based implementation for the operators listed in the indextype definition. 

An operator binding identifies the operator with a unique signature (via argument data types) and 
allows associating a function that provides an implementation for the operator.  The Oracle8i server 
executes the function when the operator is invoked.  Multiple operator bindings can be defined as long 
as they differ in their signatures.  Thus, any operator can have an associated set of zero or more 
bindings.  Each of these bindings can be evaluated using a user-defined function which could be one 
of the following:  

• Stand-Alone Functions 

• Package Functions 

• Object Member Methods 

 
User-defined operators can be invoked anywhere built-in operators can be used � that is,  wherever 
expressions can occur.  For example, user-defined operators can be used in the following : 

• select-list of a select command 

• condition of a where clause 

• order by and group by clauses 

 
When an operator is invoked, its evaluation is transformed into the execution of one of the functions 
bound to it.  This transformation is based on the data types of the arguments to the operator.  If none 
of the functions bound to the operator satisfy the signature with which the operator is invoked, an 
error occurs.  There might be some implicit type conversions present during the transformation 
process. 

The following example illustrates the extensible indexing and user-defined operator framework. 

Example:  EExample:  EExample:  EExample:  Extensible Indexing and Operatorsxtensible Indexing and Operatorsxtensible Indexing and Operatorsxtensible Indexing and Operators    

Consider a text retrieval application.  For such applications, indexing involves parsing the text and 
inserting the words or tokens into an inverted index.  Such index entries typically have the following 
logical form 

(token, <docid, data>)

where token is a word or stem that is a term in searches, docid is a unique identifier for a document 
this word occurs in, and data is a segment containing information on the how many times or where in 
the document the word occurs. 

A sample index entry for such an application would look like: 



(Ulysses, <5, 3, [7 62 225]>, <26, 2, [33, 49]>, ...)

In this sample index entry, the token Ulysses appears in document 5 at 3 locations (7, 62, and 225) and 
in document 26 at 2 locations (33 and 49).  Note that the index would contain one entry for every 
document with the word Ulysses.   

Defining a Text Indexing SchemeDefining a Text Indexing SchemeDefining a Text Indexing SchemeDefining a Text Indexing Scheme    

The sequence of steps required to define a text indexing scheme using a text Indextype are:  

•  Define and code functions to support functional implementation of operators which eventually 
would be supported by the text indextype. 

Suppose our text indexing scheme is in the context of a text data cartridge that intends to support an 
operator Contains.  The operator Contains takes as parameters a text value and a key and returns a 
boolean value indicating whether the text contains the key.  The functional implementation of this 
operator is a regular function defined as : 

CREATE FUNCTION TextContains(Text IN VARCHAR2,

Key IN VARCHAR2) RETURN BOOLEAN AS

BEGIN

.......

END TextContains;

•  Create a new operator and define its specification, namely the argument and return data types, 
and the functional implementation: 

CREATE OPERATOR Contains

BINDING (VARCHAR2, VARCHAR2) RETURN BOOLEAN

USING TextContains;
•  Define a type or package that implements ODCIIndex.  This involves implementing routines for 

index definition, index maintenance, and index scan operations.   

The index definition routines (ODCIIndexCreate, ODCIIndexAlter, ODCIIndexDrop, 
ODCIIndexTruncate) build the text index when the index is created, alter the index information when 
the index is altered, remove the index information when the index is dropped, and truncate the text 
index when the base table is truncated. 

The index maintenance routines (ODCIIndexInsert, ODCIIndexDelete, ODCIIndexUpdate) maintain 
the text index when the table rows are inserted, deleted or updated.   

The index scan routines (ODCIIndexStart, ODCIIndexFetch, ODCIIndexClose) implement access to 
the text index to retrieve rows of the base table that satisfy the operator predicate.  In this case, 
Contains(...) forms a boolean predicate whose arguments are passed in to the index scan routines.  The 
index scan routines scan the text index and return the qualifying rows to the system. 

CREATE TYPE TextIndexMethods (

FUNCTION ODCIIndexCreate(...)

...

);

CREATE TYPE BODY TextIndexMethods (

...



);

• Create the Text Indextype schema object.  The Indextype definition also specifies all the 
operators supported by the new indextype and the type that implements the index interface. 

CREATE INDEXTYPE TextIndexType

FOR Contains(VARCHAR2, VARCHAR2)

USING TextIndexMethods;

UsiUsiUsiUsing the Text Indexing Schemeng the Text Indexing Schemeng the Text Indexing Schemeng the Text Indexing Scheme    

Suppose that the  text Indextype presented in the previous section has been defined in the system.  The 
user can define text indexes on text columns and use the associated Contains operator to query text 
data.  Further, suppose an Employees table is defined as follows: 

CREATE TABLE Employees (name VARCHAR2(64), id INTEGER,

resume VARCHAR2(2000));

A text domain index can be built on the resume column as follows:  

CREATE INDEX ResumeIndex ON Employees(resume)

INDEXTYPE IS TextIndex;

The text data in the resume column can be queried as: 

SELECT * FROM Employees WHERE Contains(resume, ‘Oracle’);

The query execution will use the text index on resume to efficiently evaluate the Contains() predicate. 
 
 
Extensible Optimizer  
 
The extensible optimizer functionality enables authors of user-defined functions and indexes to create 
statistics collection, selectivity, and cost functions [ODC99].  This information is used by the 
optimizer in choosing a query plan.  The cost-based optimizer is thus extended to use the user-
supplied information. 

The optimizer generates an execution plan for a SQL statement (for simplicity, consider a SELECT 
statement � the same applies for other statements). An execution plan includes an access method for 
each table in the FROM clause, and an ordering (called the join order) of the tables in the FROM 
clause.  System-defined access methods include indexes, hash clusters, and table scans.  The optimizer 
chooses a plan by generating a set of join orders or permutations, computing the cost of each, and 
selecting the one with the lowest cost.  For each table in the join order, the optimizer computes the 
cost of each possible access and join method choosing the one with the lowest cost.  The cost of the 
join order is the sum of the access method and join method costs.  The costs are calculated using 
algorithms which together compose the cost model.  A cost model can include varying level of detail 
about the physical environment in which the query is executed.  Oracle�s present cost model includes 
only the number of disk accesses with minor adjustments to compensate for the lack of detail.  The 



optimizer uses statistics about the objects referenced in the query to compute the costs.  The statistics 
are gathered using the ANALYZE command.  The optimizer uses these statistics to calculate cost and 
selectivity.  The selectivity of a predicate is the fraction of rows in a table that will be chosen by the 
predicate.  

Extensible indexing functionality enables users to define new operators, index types, and domain 
indexes.  For such user-defined operators and domain indexes, the extensible optimizer gives data 
cartridge developers control over the three main components used by the optimizer to select an 
execution plan: statistics, selectivity, and cost.  We look at each of these components in more detail. 

StatisticsStatisticsStatisticsStatistics    

The ANALYZE command is extended  so that whenever a domain index is to be analyzed, a call is 
made to the cartridge-specified statistics collection function.  The representation and meaning of these 
user-collected statistics is not known to the database. 

In addition to domain indexes, cartridge-defined statistics collection functions are also supported for 
individual columns of a table and data types (whether built-in types or object types).  In the former 
case, whenever a column is analyzed, in addition to the standard statistics collected by the database, 
the user-defined statistics collection function is called to collect additional statistics.  If a statistics 
collection function exists for a data type, it is called for each column of the table being analyzed of the 
specified type. For example, the following statement associates a statistics type ImgStats_t which 
implements the statistics collection function (ODCIStatsCollect) with the image column imgcol of the 
table tab. 

ASSOCIATE STATISTICS WITH COLUMNS tab.imgcol USING ImgStats_t;

The following ANALYZE command collects statistics for the tab table. In addition to the usual 
statistics collected by Oracle, the ODCIStatsCollect function is invoked to collect extra statistics for 
the imgcol column. 

ANALYZE TABLE tab COMPUTE STATISTICS;

Example: StatisticsExample: StatisticsExample: StatisticsExample: Statistics    

Consider images stored in a BLOB column within a table created as :  

CREATE TABLE ImgTab (

name VARCHAR2(100),

imgcol BLOB

);

 

The following statement associates a statistics type ImgStats_t which implements the statistics 
collection function (ODCIStatsCollect) with the image column imgcol of the table tab. 

ASSOCIATE STATISTICS WITH COLUMNS ImgTab.imgcol USING

ImgStats_t;

 

The type ImgStats_t implements the ODCIStats interface. 

CREATE TYPE ImgStats_t AS OBJECT



(

STATIC FUNCTION ODCIStatsCollect(…)…

…

);

The following ANALYZE command collects statistics for the ImgTab table. In addition to the usual 
statistics collected by Oracle, the ODCIStatsCollect function is invoked to collect extra statistics for 
the imgcol column. It could collect any relevant information regarding the images. For example, the 
average size of the images is a useful indicator of the time required to process the images.  

ANALYZE TABLE ImgTab COMPUTE STATISTICS;

SelectivitySelectivitySelectivitySelectivity    

The optimizer uses statistics to calculate the selectivity of predicates.  The selectivity is the fraction of 
rows in a table that will be chosen by the predicate and is a number between 0 and 1.  The selectivity 
of a predicate is used to estimate the cost of a particular access method.  It is also used to determine 
the optimal join order.  A poor choice of join order by the optimizer could result in a very expensive 
execution plan. 

By default, the optimizer uses a standard algorithm to estimate the selectivity of selection and join 
predicates.  However, the algorithm does not work very well when predicates contain functions or 
type methods.  Additionally, in Oracle8i predicates can contain user-defined operators about which the 
optimizer does not have any information and so cannot compute an accurate selectivity. 

For greater control over the optimizer�s selectivity estimation, the extensible optimizer enables data 
cartridge developers to specify user-defined selectivity functions for predicates containing user-
defined operators, standalone functions, package functions or type methods.  The user-defined 
selectivity function will be called by the optimizer whenever it encounters a predicate with one of the 
following forms: 

op(...) relop <constant> 

<constant> relop op(...) 

op(...) LIKE <constant>  

where op(...) is a user-defined operator, standalone function, package function or type method, relop is 
any of the standard comparison operators (<, <=, =, >=, >), and <constant> is a constant value 
expression or bind variable.  For such cases, data cartridges can define selectivity functions that will 
be associated with op(...).  The arguments to op can be columns, constants, bind variables or attribute 
references.  When such a predicate is encountered, the optimizer will call the user-defined selectivity 
function and pass the entire predicate as an argument including the operator, function or type method 
and its arguments, the relational operator relop, and the constant expression or bind variable.  The 
return value of the user-defined selectivity function must be between 0 and 1, inclusive; values outside 
this range are ignored by the optimizer.  Typically, the arguments and the statistics collected are used 
to estimate the selectivity of an operation. 

 



Example: SelectivityExample: SelectivityExample: SelectivityExample: Selectivity    

Consider a function Brightness() defined on images that returns a value between 0 and 100 to indicate 
the level of brightness. A selectivity function can be associated by implementing the 
ODCIStatsSelectivity function within a type, say ImgStats_t and executing the following statement :  

ASSOCIATE STATISTICS WITH FUNCTIONS Brightness

USING ImgStats_t;

 

Now, if a user executes a query of the form :  

SELECT * FROM ImgTab

WHERE Brightness(imgcol) BETWEEN 50 and 60;

 

the selectivity of the predicate is computed by invoking the user supplied implementation of the 
ODCIStatsSelectivity function. 

    

CostCostCostCost    

The optimizer estimates the cost of various access paths to choose an optimal plan.  For example, it 
may compute the cost of using an index and a full table scan in order to be able choose between the 
two.  However, for data cartridge defined domain indexes,  the optimizer does not know the internal 
storage structure of the index. Thus, the optimizer cannot make a good estimate of the cost of using 
such an index.  Similarly, the default optimizer model assumes that the cost of I/O dominates � and 
that other activities like function evaluations have zero cost.  This is only true when functions include 
relatively inexpensive built-in functions.  User-defined functions can be very expensive since they can 
be CPU-intensive.  User-defined functions can invoke recursive SQL.  When the function argument is 
a file LOB, there may be substantial I/O cost. 

For superior optimization, the cost model is extended to enable users to define costs for domain 
indexes, user-defined functions, standard standalone functions, package functions, and type methods.  
The user-defined costs can be in the form of default costs that the optimizer simply looks up, or can be 
full-blown cost functions which the optimizer calls to compute the cost. 

User-defined cost, like user-defined selectivity, is optional on the part of a data cartridge.  If no user-
defined cost is available, the optimizer uses its internal heuristics to compute an estimate.  However, 
in the absence of useful information about the storage structures in user-defined domain indexes and 
functions, such estimates can be very inaccurate and may result in the choice of a sub-optimal 
execution plan. 

User-defined cost functions for domain indexes are called by the optimizer only if a domain index is a 
valid access path for a user-defined operator. 

User-defined cost functions can return three parameters.  Each parameter represents the cost of a 
single execution of a function or domain index implementation: 

1. cpu - Number of machine instructions executed by the function or domain index implementation.   

2. i/o - Number of data blocks read by the function or domain index implementation.   



3. network - Number of data blocks transmitted.  This is valid for distributed queries as well as 
functions and domain index implementations.   

 

Example: CostExample: CostExample: CostExample: Cost    

Consider again the query involving the Brightness() function introduced in the previous section.  

SELECT * FROM ImgTab

WHERE Brightness(imgcol) BETWEEN 50 and 60;

The optimizer will invoke the ODCIStatsFunctionCost() function implemented within ImgStats_t to 
estimate the cost of executing the Brightness() function. Typically, the cost function retrieves the user 
collected statistics - e.g. in this case, average length of the image column - and computes the cost of 
one invocation of the function. 

 

The table below describes the ODCIStats interface. 

 
 
 Interface Routine Description 

Statistics ODCIStatsCollect Collects statistics for column and index data. 

 ODCIStatsDelete Drops statistics. 

Selectivity ODCIStatsSelectivity Estimates the selectivity of a predicate involving user 
defined functions or operators. 

Cost ODCIStatsFunctionCost Accepts information about the function parameters and 
computes the cost of  a single execution. 

 ODCIStatsIndexCost Accepts information about the operator predicate and 
computes the cost of the domain index scan. 

Table 3 : ODCIStats Interface 

 
 
User-defined Aggregates 

Typical database systems support a small number of aggregate operators (e.g. MAX, MIN) over scalar 
datatypes such as number and character strings. However, it is desirable to provide the capability of 
adding new aggregate operators to the DBMS. For instance, a new aggregate operator SecondMax() - 
which  ignores the highest value and returns the second highest - might be necessary in some 
application. Further, in complex domains, the semantics of aggregation is not known to the DBMS 
and has to be provided by the domain code. For instance,  MAX() in the spatial domain may refer to 
the geometry with the largest enclosed area. 



User Defined Aggregate operators (UDAG) are the mechanism to incorporate new aggregate 
operators with user specified aggregation semantics. Users can specify a set of routines that implement 
the aggregation logic. Once the aggregate operator is registered with Oracle, it can be used by users 
wherever built-in aggregates can be used.  

An aggregate operator operates over a set of rows and returns a single value. The sets of rows for 
aggregation are typically identified using a GROUP BY clause. For example:  

SELECT SUM(T.Sales)FROM AnnualSales T

GROUP BY T.State

Conceptually, an aggregate value is computed in three steps. Taking the example of SUM(), the steps 
are  

• Initialize : intialize the computation. 

 Action - assign 0 to runningSum and runningCount variables.  

• Iterate : iteratively examine each of the tuples, and perform necessary computations. 

 Action - add input number value to runningSum variable, and increment runningCount variable  
 by 1  

• Terminate : Compute the resulting value. 

 Action - Compute the Average as (runningSum/runningCount) 

New aggregate operators can be registered by providing the implementations for the above 
aggregation steps. 

The variables runningSum and runningCount, in the above example, determine the state of the 
aggregation. We can think of the state as a state variable, an object that contains runningSum and 
runningCount as elements. Thus, the Initialize function initializes the state variable, Iterate updates it 
and Terminate uses the state variable to return the resultant value. Note that the state variable 
completely determines the state of the aggregation.  

Thus, with user-defined aggregate operators,  

1. The application defines the set of implementations of the UDAG, and specifies each of the 
implementations in terms of the implementation routines, and the data types of the argument 
values and return value. 

2. The application creates the implementation routines in C++ or Java. 

3. The application uses the UDAG in SQL query statements. 

Example: UserExample: UserExample: UserExample: User----defined Aggregatesdefined Aggregatesdefined Aggregatesdefined Aggregates    

This section presents an example of a user-defined aggregate operator. An application requires the use 
of a TopTen aggregate operator which has the following behaviour : The aggregate operator computed 
over a set of values determines the ten largest values, and returns a single object having the ten values 
as its components.  

The end-user would like to use the TopTen operator  in queries like the following :  

SELECT TopTen(A1.DollarSales) FROM AnnualSales A1



GROUP BY A1.State

The TopTen aggregate operator is implemented in the following steps: 

• Specify the aggregate operator in terms of its implementations, and specify the data types of the 
argument values, and return value for each implementation as follows : 

CREATE OPERATOR TopTen AS AGGREGATE

BINDING (NUMBER) RETURN TenNUMBER USING TopTenNumber;

TenNUMBER is a collection type capable of holding ten values and is the return type of the aggregate 
operator implementation.  

• Implement the aggregate operator implementation routines in any language supported  by Oracle 
for type methods e.g. PL/SQL, C,C++ or Java. The implementation routines for aggregation are 
member methods of the  TopTenNumber object type.  

CREATE TYPE TopTenNumber

(

FUNCTION ODCIAggregateInitialize(...)

...

);

CREATE TYPE BODY TopTenNumber

(

FUNCTION ODCIAggregateInitialize() AS

BEGIN

......

END ODCIAggregateInitialize;

...

);

The table below describes the ODCIAggregate interface. 

 
Action Interface Routines Description 

Serial Aggregation ODCIAggregateInitialize Initializes aggregation context 

 ODCIAggregateIterate Accepts next batch of rows and updates 
aggregation context 

 ODCIAggregateTerminate Returns aggregate value 

Parallel Aggregation ODCIAggregateParInit Initializes parallel aggregation context 

 ODCIAggregateParIter Accepts next batch of rows and updates the 
parallel aggregation context 

 ODCIAggregateParTerm Returns the final parallel aggregation context 

 ODCIAggregateSuperAggr Accepts set of aggregation context and returns 
aggregate value 



Table 4 : ODCIAggregate Interface 

Using the UserUsing the UserUsing the UserUsing the User----defined Aggregatesdefined Aggregatesdefined Aggregatesdefined Aggregates    

User-defined aggregate operators can be used in DML statements similar to built-in aggregates. The 
evaluation of the UDAG triggers the invocation of the underlying user-supplied routines to compute 
the aggregate value. For example, 

SELECT TopTen(A1.DollarSales) FROM AnnualSales A1

GROUP BY A1.State

triggers the invocation of the initialization routine followed by one or more invocations of the iteration 
routine followed by a invocation of the termination routine. 

 
 
Abstract Tables 
 
A cartridge developer might occasionally need to access data that is outside any database. Such data 
may have a certain structure, albeit different from the structure of relational or object-relational 
databases. For example, some data may be stored as XML files on a file system. As part of data 
cartridge operations, it is sometimes important to perform composite operations that span such 
external data as well as internal, tabular data. The best way to combine such different structures is by 
providing cartridge developers the ability to create a uniform table metaphor over all data by 
constructing �abstract� tables corresponding to the external sources. 

An abstract table is a �virtual� table where the table data is retrieved by invoking user registered 
functions. In its simplest form, the user implements iteration routines to scan the rows of the table. 
However, abstract tables provide a firm framework for supporting user defined data manipulation as 
well. The user can implement routines that will be invoked when the abstract table is created, dropped 
and when rows are inserted/deleted/updated. 

Abstract tables also support other table features such as building secondary indexes, defining 
constraints and triggers. 

An abstract table is created in a manner similar to regular tables, the difference being that the name of 
the underlying implementation type is specified. The implementation type contains the 
implementations of the ODCITable interface - consisting of the table scan and manipulation routines. 
The ODCITable interface is listed after the example. 

Example: Abstract TablesExample: Abstract TablesExample: Abstract TablesExample: Abstract Tables    

Suppose we want to read Employee data that originates from a set of operating-system files. 

CREATE ABSTRACT TABLE emps_filetab

(

name VARCHAR2(30),

id NUMBER,

mgr VARCHAR2(30)

)

USING LoaderFileReader

PARAMETERS (‘/tmp/emp.dat’);



The abstract table definition of emps_filetab specifies the name of the object type LoaderFileReader 
that implements the ODCITable interface routines. The ODCITable interface includes the create/drop, 
DML and scan routines. The PARAMETERS clause can be used to pass user defined parameters to 
the ODCITableCreate routine - in this example, the path to the loader file is specified. 

Once the abstract table has been created, it can be used exactly like regular tables eg. creating indexes, 
performing DML operations, queries, etc. 

The ODCI Table interface contains the definitions of all the routines that need to implemented by the 
abstract table implementor. Note that the definitions are static and are specified by Oracle - but their 
actual  implementations need to be provided by the user. The ODCITable interface consists of several 
classes of routines  

• Query Routines - These are the set of routines that are invoked by Oracle while querying abstract 
table data. These are also the same set of routines that are implemented for table functions. 

• DML Routines - These are the set of routines that are invoked by Oracle to insert/delete/update 
rows of the abstract table. 

• DDL Routines - These are the set of routines that are invoked by Oracle when an abstract table is 
created or dropped. 

The implementations of all the ODCITable interface routines are provided by the user in the form of 
an object type. for example, the type LoaderFileReader contains the implementation of the DDL and 
query routines for the emps_filetab abstract table. 

CREATE TYPE LoaderFileReader AS OBJECT

(

MEMBER FUNCTION ODCITableStart(...) RETURN NUMBER;

MEMBER FUNCTION ODCITableFetch(...) RETURN NUMBER;

MEMBER FUNCTION ODCITableClose(...) RETURN NUMBER;

);

CREATE TYPE BODY LoaderFileReader AS

...

END;
 
 Interface Routine Description 

Table Scan ODCITableStart Initializes a full scan of an abstract table. 

 ODCITableFetch Accepts the scan context and returns the next set of rows. 

 ODCITableClose Performs cleanup at the end of scan. 

Rowid Access ODCITableLookup Retrieves row corresponding to the specified row 
identifier. 

Describe Row ODCITableDescribe Returns the metadata descriptor of a row. 

Query Rewrite ODCITableRewrite Returns a SQL query string that can be plugged into 
original query in place of the abstract table. 



Data Manipulation ODCITableInsert Insert a new row into the table. 

 ODCITableDelete Delete a row from the table. 

 ODCITableUpdate Update a row of the table. 

Data Definition ODCITableCreate Processes parameters specified while creating the 
abstract table. 

 ODCITableDrop Performs cleanup when abstract table dropped. 

 

Table 5 : ODCITable Interface 

 

When the user executes a query over the abstract table, a scan is set up to iterate over the rows of the 
table.   

SELECT * FROM emps_filetab; 

Table FunctionsTable FunctionsTable FunctionsTable Functions    

 
Data cartridge developers may also need dynamic, iterative behavior on virtually created tables. The 
extensibility architecture also provides iterative Table Functions to complement Abstract Tables.  

There are scenarios when data is inherently dynamic and depends on user-supplied parameters. Such 
data cannot be modeled easily using Abstract Tables. For example, one might want to access data 
present in an external web site (identified by a URL). A function ReadURL() can be implemented to 
take in the URL as input and return a collection representing the read data. 

SELECT * FROM TABLE(ReadURL(“www.oracle.com”));

 

This solution has some drawbacks. The entire result set is returned from ReadURL() as a single 
collection. This not only affects the response time of the query but also consumes more resources. 
Table functions are the right answer to this problem. They are similar to regular functions returning 
collections, except that the result is returned iteratively (i.e. in subsets). This is accomplished by 
implementing the table scan routines within the ODCITable interface. 

Example 

The statement below creates a table function GetURL() which is implemented to return the result 
collection iteratively. 

CREATE FUNCTION GetURL(url VARCHAR2) RETURN ROWSET

ITERATE USING GetURLMethods;

 

The type GetURLMethods implements the table scan routines of the ODCITable interface. 

CREATE TYPE GetURLMethods AS OBJECT

(



STATIC FUNCTION ODCITableStart(…)…

MEMBER FUNCTION ODCITableFetch(…)…

MEMBER FUNCTION ODCITableClose(…)…

);

 

Now, when the user executes a query of the form :  

SELECT * FROM TABLE(GetURL(“www.oracle.com”));

 

the table scan routines are appropriately invoked by Oracle to retrieve the rows representing the data 
contained in the web-site. 

The differences between abstract tables and table functions lie in the dynamism of data and the set of 
allowed operations. The table below shows some of the key differences. 

 

 TABLE 
FUNCTIONS 

ABSTRACT 
TABLES 

Query-time parameters Yes No 

Create-time parameters No Yes 

Indexes No Yes 

Constraints and triggers No Yes 

Inserts/deletes/updates No Yes 

Partitioning Specification No Yes 

Table 6:  Table Functions vs. Abstract Tables 

 

In other words, abstract tables are a more general mechanism but do not provide the ability to specify 
parameters at query time. Table functions are a simplified mechanism to provide user defined iterators 
in such cases. 

 
 
 
 
Cartridge Basic Services 
 
In order to develop and deploy full-fledged cartridges, Oracle�s extensibility architecture provides a 
set of commonly useful routines. They represent a very useful library which not only assists in the 
development of data cartridges, but also facilitates inter-cartridge coordination. Typically, these basic 
services are exposed as OCI routines that can be invoked by a cartridge. 

These cartridge service interfaces include: 



• Memory Management 

• Parameter Management 

• Internationalization 

• Error Reporting 

• Context Management 

• File I/O 

 

Memory ManagementMemory ManagementMemory ManagementMemory Management    

The Memory Management Interfaces contain support for: 

• Allocating (permanent and freeable) memory of several durations:  

− Session 

− Statement 

− User Call to Server  

− Server Call to Cartridge 

• Re-allocating memory 

• Allocating sub-duration memories 

• Large contiguous memory allocation 

and more. 

 

Parameter ManagementParameter ManagementParameter ManagementParameter Management    

The parameter manager provides a set of routines to process parameters from a file or a string. 
Routines are provided to process the input and to obtain key and value pairs. These key and value 
pairs are stored in memory and can be accessed via certain routines. 

The input processing routines match the contents of the file or the string against an existing grammar 
and compare the key names found in the input against the list of known keys that the user has 
registered. The behavior of the input processing routines can also be configured. 

InternationalizationInternationalizationInternationalizationInternationalization    

To support multilingual applications, national language support (NLS) ??  functionality is required by 
the cartridges. NLSRTL is a multi-platform and multilingual library that is currently used by Oracle 
ORDBMS and provides consistent NLS behavior to all Oracle products. The basic NLS services are 
available to cartridge developers in form of interfaces for the following functionality 

• Locale information retrieval 

• String manipulation in the format of multi-byte and wide-char 

• Character set conversion including Unicode 

• Messaging mechanism 



Error ReportingError ReportingError ReportingError Reporting    

The cartridge code can return errors or raise exceptions that are handed back to the Oracle server. 
There are service routines to raise errors, register error messages and manipulate the error stack. 

Context ManagementContext ManagementContext ManagementContext Management    

Context management allows clients to maintain context across calls to a cartridge. The context  
maintained by a cartridge could be based on a duration such as SESSION, STATEMENT or CALL. 
The cartridge services provide a mechanism for saving and retrieving contexts. 

File I/OFile I/OFile I/OFile I/O    

The OCI file I/O package is designed to make it easier to write portable code that interacts with the 
file system by providing a consistent view of file I/O across multiple platforms. 

 
 
Case Studies 
 

The Extensibility Services and Interfaces available in Oracle8i have been used by Oracle to create 
some commonly useful data cartridges.  This section discusses the implementations of these data 
cartridges with a view to shedding more light on the Extensibility Architecture and its benefits. 

The Oracle8The Oracle8The Oracle8The Oracle8iiii    interinterinterinterMedia Text Data CartridgeMedia Text Data CartridgeMedia Text Data CartridgeMedia Text Data Cartridge    

The Oracle8i interMedia Text Cartridge supports full-text indexing of text documents [OIMT99]. The 
text index is an inverted index storing the occurrence list for each token in each of the text documents. 
The inverted index is stored in an index-organized table and is maintained by performing 
insert/update/delete on the table whenever the table on which the text index is defined is modified. 
The text cartridge defines an operator Contains that takes as input a text column and a keyword and 
returns true or false depending on whether the keyword is contained in the text column or not. The 
benefits of extensible indexing framework can be seen by analyzing the execution of the same text 
query before and in Oracle8i. Consider an example query : 

SELECT * FROM docs WHERE Contains(resume, ‘Oracle’);
 

In releases prior to Oracle8i, the text indexing code, though logically a part of the Oracle server, was 
not known by the query optimizer to be a valid access path. As a result, text queries were evaluated as 
a two step process: 

1. The text predicate is evaluated first. The text index is scanned and all the rows satisfying the 
predicate are identified. The  row identifiers of all the relevant rows are written out into a 
temporary result table, say results. 

2. The original query is rewritten as a join of the original query (minus the text operator) and the 
temporary result table containing row identifiers for rows that satisfy the text operator, as follows: 

SELECT d.* FROM docs d, results r WHERE d.rowid = r.rid;
 



In Oracle8i, using the extensible indexing framework the above query is now executed in a single step 
and pipelined fashion. The text indexing code gets invoked at the appropriate times by the kernel. 
There is no need for a temporary result table because the relevant row identifiers are streamed back to 
the server via the ODCI interfaces. This also implies that there are no extra joins to be performed in 
this execution model. Further, all rows that satisfy the text predicate do not have to be identified 
before the first result row can be returned to the user. 

The performance of text queries has improved due to :  

1) Reduced I/O because of no temporary  result table.  

2) Improved response time because the row satisfying the text predicate can be identified on 
demand.  

3) Better query plans because the number of joins is reduced as there are no extra joins with 
temporary result tables.  A decrease in the number of joins typically improves the effectiveness of 
the optimizer due to reduced search space.  

We have observed as much as 10-times improvement in performance for certain search-intensive 
queries, after the integration using the extensible indexing framework. 

The Oracle8The Oracle8The Oracle8The Oracle8iiii Spatial Data Cartridge Spatial Data Cartridge Spatial Data Cartridge Spatial Data Cartridge    

The Oracle 8i Spatial cartridge allows users to store, spatially index and query spatial data [OSpa99]. 
The spatial data is modeled as an object type SDO_GEOMETRY. The coordinate values describing a 
geometry are stored as a collection attribute within the object type.  

A spatial index can be built on a SDO_GEOMETRY column. The spatial index consists of a 
collection of tiles corresponding to every spatial object and is stored in an Oracle table. The spatial 
index is an instance of a spatial indextype which defines the routines for creating, maintaining and 
querying the spatial index. The spatial indextype supports an operator called Overlaps which 
determines which geometries  in two given layers overlap with each other. A spatial querywould be of 
the form:  

SELECT r.gid, p.gid FROM roads r, parks p

WHERE Overlaps(r,p);

The extensible indexing framework has greatly improved the usability of the Oracle spatial cartridge. 
Prior to Oracle 8i, the user had to explicitly invoke PL/SQL package routines to create an index or to 
maintain the spatial index following a DML operation to the base spatial table. With this framework, 
the spatial index is maintained implicitly by the server just like a built in index.  

Also, with the extensible indexing framework the logic of using the index to process the queries is 
encapsulated in the indextype routines and the end user is not burdened with any details of the index 
implementation. Prior to Oracle 8i the above query had to be formulated as follows:  

SELECT DISTINCT r.gid, p.gid

FROM roads_sdoindex r,parks_sdoindex p

WHERE (r.grpcode = p.grpcode) AND

(r.sdo_code BETWEEN p.sdo_code AND p.sdo_maxcode OR

p.sdo_code BETWEEN r.sdo_code AND r.sdo_maxcode)



The drawback of this approach is that the querying algorithm which may be proprietary has to be 
exposed to the user, the entire logic has to be expressed as a single SQL statement and the user is 
expected to learn about the details of the storage structures for the index. In addition to vastly  
simplifying the queries, the Oracle 8i framework allows changing the underlying spatial indexing 
algorithms  without requiring the end users to change their queries.  The performance of spatial 
queries using the extensible indexing framework has been as good as the performance of the prior 
implementation. 

The Oracle8The Oracle8The Oracle8The Oracle8iiii Visual Information Retrieval Data Cartridge Visual Information Retrieval Data Cartridge Visual Information Retrieval Data Cartridge Visual Information Retrieval Data Cartridge    

The Oracle8i Visual Information Retrieval (VIR) cartridge supports content-based retrieval of images 
[OVIR99]. An image is modeled as the ORDImage object type. A BLOB attribute stores the raw bytes 
of the image. The image cartridge supports building image indexes. For purposes of building an index, 
each image is transformed into a signature which is an abstraction of the contents of the image in 
terms of its visual attributes. A set of numbers that are a coarse representation of the signature are then 
stored in a table representing the index data. The cartridge supports an operator Similar that searches 
for images similar to a query image. The benefits of extensible indexing can be seen by analyzing the 
execution of the same image query before and in Oracle8i. Consider an example query : 

SELECT * FROM images T WHERE VIRSimilar(T.img.Signature,

querySignature, ‘globalcolor=0.5, localcolor=0.0,texture=0.5,

structure=0.0’, 10,1);

In releases prior to Oracle8i, the image cartridge had no indexing support. Hence, the operator was 
evaluated as a table scan, and the image comparison had to be done for every row. In Oracle8i, using 
the extensible indexing framework, the VIRSimilar operator can be evaluated in three phases- the first 
phase is a filter that does a range query on the index data table, the second phase is another filter that 
is a computation of the distance measure and the third phase does the actual image comparison. Thus, 
the complex problem of high-dimensional indexing is broken down  into several simpler components. 
Also, the first two passes of filtering are very selective and greatly reduce the data set on which the 
image comparisons need to be performed. 

The performance of image queries has improved due to the multi-level  filtering process instead of 
doing the image comparison for every row, and optimization of  the range query on the index data 
table using indexes etc. Thus, in Oracle8i, it is now possible to do image comparisons on tables 
storing millions of rows, something that was not possible in prior releases. 

 
Conclusions 
 
Oracle8i provides a framework for database extensibility so that complex, content-rich types can be 
supported and managed natively in the database. This framework provides the infrastructure needed to 
allow extensions of the database server by creating domain-specific components called Data 
Cartridges. The major services provided by the database � Type System, Server Execution 
Environment, Indexing, Query Optimization, Aggregation etc. are all capable of being customized 
through a special set of interfaces. These Data Cartridge Interfaces help the close integration of all 
kinds of data into the Oracle8i platform. 
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